Skip to main content
Log in

Radiological risk from activity concentrations of natural radionuclides: Cumulative Hazard Index

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The Cumulative Hazard Index method has been proposed for the first time to determine the low and high-risk levels of radionuclides. The significant radiological parameters and risk analyses for 226Ra, 232Th and 40K pollution levels control in the soil are determined through the probability distribution functions. The activity concentration of 226Ra, 232Th and 40K in samples were found to vary from of 16 ± 0.6 to 62 ± 3.2 Bq kg−1 with an average 30 ± 1.1 Bq kg−1, 24 ± 0.9 to 63 ± 1.3 Bq kg−1 with an average 37 ± 1.0 Bq kg−1 and 316 ± 5.8 to 878 ± 6.9 Bq kg−1 with an average 525 ± 6.2 Bq kg−1, respectively.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. UNSCEAR (2000) United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations New York. https://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Report_Vol.I.pdf.

  2. Kim JK, Han M, Nili M (2011) Effects of N-acetyl-l-cysteine on fish hepatoma cells treated with mercury chloride and ionizing radiation. Chemosphere 85:1635–1638. https://doi.org/10.1016/j.chemosphere.2011.08.029

    Article  CAS  PubMed  Google Scholar 

  3. Burnett JL, Davies AV (2012) Development of a cosmic veto gamma-spectrometer. J Radioanal Nucl Chem 292:1007–1010. https://doi.org/10.1007/s10967-017-5202-5

    Article  CAS  Google Scholar 

  4. Özmen H, Külahci F, Çukurovali A, Doǧru M (2004) Concentrations of heavy metal and radioactivity in surface water and sediment of Hazar Lake (Elaziǧ, Turkiye). Chemosphere 55:401–408. https://doi.org/10.1016/j.chemosphere.2003.11.003

    Article  CAS  PubMed  Google Scholar 

  5. Goren E, Turhan S, Ugur FA, Gezer F, Ozdemir B, Ufuktepe Y (2014) Tritium activity levels in drinking water of Adana. Turkiye J Radioanal Nucl Chem 299:1427–1431. https://doi.org/10.1007/s10967-013-2899-7

    Article  CAS  Google Scholar 

  6. Ranjbar H, Bahrami-Samani A, Yazdani MR, Ghannadi-Maragheh M (2016) Determination of human absorbed dose of cocktail of Sm-153/Lu-177-EDTMP, based on biodistribution data in rats. J Radioanal Nucl Chem 307:1439–1444. https://doi.org/10.1007/s10967-015-4324-x

    Article  CAS  Google Scholar 

  7. Ishikawa Y, Kikuchi T, Sekine T, Yoshihara K (1995) Concentrations of Ag-108, Cs-137, and Pb-210 in oyster (Crassostrea gigas) on the Japanese coast in relation to the distribution and behavior of radionuclides in sea water. J Radioanal Nucl Chem Artic 197:343–355. https://doi.org/10.1007/BF02036010

    Article  CAS  Google Scholar 

  8. Rodriguez PB, Tome FV, Lozano JC (2014) Assessment of the vertical distribution of natural radionuclides in a mineralized uranium area in south-west Spain. Chemosphere 95:527–534. https://doi.org/10.1016/j.chemosphere.2013.09.111

    Article  CAS  Google Scholar 

  9. Khandaker MU, Nasir NLM, Asaduzzaman K, Olatunji MA, Amin YM, Abu Kassim H, Bradley DA, Jojo PJ, Alrefae T (2016) Evaluation of radionuclides transfer from soil-to-edible flora and estimation of radiological dose to the Malaysian populace. Chemosphere 154:528–536. https://doi.org/10.1016/j.chemosphere.2016.03.121

    Article  CAS  PubMed  Google Scholar 

  10. Perez-Moreno SM, Gazquez MJ, Perez-Lopez R, Vioque I, Bolivar JP (2018) Assessment of natural radionuclides mobility in a phosphogypsum disposal area. Chemosphere 211:775–783. https://doi.org/10.1016/j.chemosphere.2018.07.193

    Article  CAS  PubMed  Google Scholar 

  11. Imam DM, Moussa SI, Attallah MF (2019) Sorption behavior of some radionuclides using prepared adsorbent of hydroxyapatite from biomass waste material. J Radioanal Nucl Chem 319:997–1012. https://doi.org/10.1007/s10967-018-06403-7

    Article  CAS  Google Scholar 

  12. Manjon G, Mantero J, Vioque I, Galvan J, Diaz-Frances I, Garcia-Tenorio R (2019) Some naturally occurring radionuclides (NORM) in a river affected by acid mining drainages. Chemosphere 223:536–543. https://doi.org/10.1016/j.chemosphere.2019.02.059

    Article  CAS  PubMed  Google Scholar 

  13. Kaewtubtim P, Meeinkuirt W, Seepom S, Pichtel J (2017) Radionuclide (226Ra, 232Th, 40K) accumulation among plant species in mangrove ecosystems of Pattani Bay, Thailand. Mar Pollut Bull 115:391–400. https://doi.org/10.1016/j.marpolbul.2016.12.050

    Article  CAS  PubMed  Google Scholar 

  14. Cetin B, Ozturk F, Keles M, Yurdakul S (2017) PAHs and PCBs in an Eastern Mediterranean megacity, Istanbul: their spatial and temporal distributions, air-soil exchange and toxicological effects. Environ Pollut 220:1322–1332. https://doi.org/10.1016/j.envpol.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  15. Flores RM, Kaya N, Eşer Ö, Saltan Ş (2017) The effect of mineral dust transport on PM10 concentrations and physical properties in Istanbul during 2007–2014. Atmos Res 197:342–355. https://doi.org/10.1016/j.atmosres.2017.07.009

    Article  CAS  Google Scholar 

  16. Dragovic S, Mihailovic N, Gajic B (2008) Heavy metals in soils: Distribution, relationship with soil characteristics and radionuclides and multivariate assessment of contamination sources. Chemosphere 72:491–495. https://doi.org/10.1016/j.chemosphere.2008.02.063

    Article  CAS  PubMed  Google Scholar 

  17. Gbadamosi MR, Afolabi TA, Banjoko OO, Ogunneye AL, Abudu KA, Ogunbanjo OO, Jegede DO (2018) Spatial distribution and lifetime cancer risk due to naturally occurring radionuclides in soils around tar-sand deposit area of Ogun State, southwest Nigeria. Chemosphere 193:1036–1048. https://doi.org/10.1016/j.chemosphere.2017.11.132

    Article  CAS  PubMed  Google Scholar 

  18. Abdushukurov DA, Abdusamadzoda D, Djuraev AA, Duliu OG, Frontasyeva MV (2018) Distribution of radioactive isotopes in the mountain and piedmont regions of Central Tajikistan Varzob river valley. J Radioanal Nucl Chem 318:1873–1879. https://doi.org/10.1007/s10967-018-6206-5

    Article  CAS  Google Scholar 

  19. Kilic O, Belivermis M, Gonulal O, Sezer N, Carvalho FP (2018) Po-210 and Pb-210 in fish from northern Aegean Sea and radiation dose to fish consumers. J Radioanal Nucl Chem 318:1189–1199. https://doi.org/10.1007/s10967-018-6216-3

    Article  CAS  Google Scholar 

  20. Truong Thi Hong L, Vu Ngoc B, Nguyen Quang D, Nguyen Ngoc A, Mai Thanh M, Truong Huu Ngan T, Huynh Thi Yen H, Van Nguyen T, Truong Minh H (2018) Estimation of soil characteristics based on the depth distributions of U-238, Th-232, Ra-226, K-40 activity concentrations using laboratory HPGe gamma spectrometry. J Radioanal Nucl Chem 318:1931–1938. https://doi.org/10.1007/s10967-018-6265-7

    Article  CAS  Google Scholar 

  21. Xhixha MK, Hasani F, Sahiti F, Xhixha G, Krasniqi B, Shyti M, Dhoqina P, Gavazaj F, Bytyci R, Mehmeti S (2018) Radiological hazard assessment around two lignite-fired power plants in Kosovo. J Radioanal Nucl Chem 316:389–395. https://doi.org/10.1007/s10967-018-5721-8

    Article  CAS  Google Scholar 

  22. Külahci F, Sen Z (2010) Progresses in radioactive contamination researches. In: Nadine Henshaw NK, Alleyne CS (eds) Radioactive contamination research developments. Nova Science Publishers Inc, New York, pp 1–42

    Google Scholar 

  23. Gorur FK, Camgoz H (2014) Natural radioactivity in various water samples and radiation dose estimations in Bolu province, Turkiye. Chemosphere 112:134–140. https://doi.org/10.1016/j.chemosphere.2014.02.074

    Article  CAS  PubMed  Google Scholar 

  24. Mohery M, Baz S, Kelany AM, Abdallah A (2014) Environmental radiation levels in soil and sediment samples collected from floating water from a land runway resulting from heavy rains in the Jeddah region, KSA. Radiat Phys Chem 97:16–24. https://doi.org/10.1016/j.radphyschem.2013.10.007

    Article  CAS  Google Scholar 

  25. Hassan NM, Ishikawa T, Hosoda M, Sorimachi A, Tokonami S, Fukushi M, Sahoo SK (2010) Assessment of the natural radioactivity using two techniques for the measurement of radionuclide concentration in building materials used in Japan. J Radioanal Nucl Chem 283:15–21. https://doi.org/10.1007/s10967-009-0050-6

    Article  CAS  Google Scholar 

  26. Jabbar A, Arshed W, Bhatti AS, Ahmad SS, Saeed Ur R, Dilband M (2010) Measurement of soil radioactivity levels and radiation hazard assessment in mid Rechna interfluvial region, Pakistan. J Radioanal Nucl Chem 283:371–378. https://doi.org/10.1007/s10967-009-0357-3

    Article  CAS  Google Scholar 

  27. Baldik R, Aytekin H, Erer M (2011) Radioactivity measurements and radiation dose assessments due to natural radiation in Karabuk (Turkiye). J Radioanal Nucl Chem 289:297–302. https://doi.org/10.1007/s10967-011-1077-z

    Article  CAS  Google Scholar 

  28. Maduar MF, Campos MP, Mazzilli BP, Villaverde FL (2011) Assessment of external gamma exposure and radon levels in a dwelling constructed with phosphogypsum plates. J Hazard Mater 190:1063–1067. https://doi.org/10.1016/j.jhazmat.2011.03.019

    Article  CAS  PubMed  Google Scholar 

  29. Rahman SU, Matiullah M, Malik F, Rafique M, Anwar J, Ziafat M, Jabbar A (2011) Measurement of naturally occurring/fallout radioactive elements and assessment of annual effective dose in soil samples collected from four districts of the Punjab Province, Pakistan. J Radioanal Nucl Chem 287:647–655. https://doi.org/10.1007/s10967-010-0819-7

    Article  CAS  Google Scholar 

  30. Aközcan S, Külahcı F, Mercan Y (2018) A suggestion to radiological hazards characterization of 226Ra, 232Th, 40K and 137Cs: spatial distribution modelling. J Hazard Mater 353:476–489. https://doi.org/10.1016/j.jhazmat.2018.04.042

    Article  CAS  PubMed  Google Scholar 

  31. Külahci F, Şen Z (2009) Potential utilization of the absolute point cumulative semivariogram technique for the evaluation of distribution coefficient. J Hazard Mater 168:1387–1396. https://doi.org/10.1016/j.jhazmat.2009.03.027

    Article  CAS  PubMed  Google Scholar 

  32. Külahcı F, Şen Z (2009a) Spatio-temporal modeling of 210Pb transportation in lake environments. J Hazard Mater 165(1–3):525–532. https://doi.org/10.1016/j.jhazmat.2008.10.026

    Article  CAS  PubMed  Google Scholar 

  33. Külahcı F (2011) A risk analysis model for radioactive wastes. J Hazard Mater 191:349–355. https://doi.org/10.1016/j.jhazmat.2011.04.083

    Article  CAS  PubMed  Google Scholar 

  34. Du J, Du JZ, Baskaran M, Bi QQ, Huang DK, Jiang YF (2015) Temporal variations of atmospheric depositional fluxes of Be-7 and Pb-210 over 8years (2006–2013) at Shanghai, China, and synthesis of global fallout data. J Geophys Res Atmos 120:4323–4339. https://doi.org/10.1002/2014JD022807

    Article  CAS  Google Scholar 

  35. Skipperud L, Salbu B (2015) Sequential extraction as a tool for mobility studies of radionuclides and metals in soils and sediments. Radiochim Acta 103:187–197. https://doi.org/10.1515/ract-2014-2342

    Article  CAS  Google Scholar 

  36. Lee HJ, Jo HY, Nam KP, Lee KH, Kim CH (2017) Measurement, simulation, and meteorological interpretation of medium-range transport of radionuclides to Korea during the Fukushima Dai-ichi nuclear accident. Ann Nucl Energy 103:412–423. https://doi.org/10.1016/j.anucene.2017.01.037

    Article  CAS  Google Scholar 

  37. Pittauer D, Tims SG, Froehlich MB, Fifield LK, Wallner A, McNeil SD, Fischer HW (2017) Continuous transport of Pacific-derived anthropogenic radionuclides towards the Indian Ocean. Scientific Reports. https://doi.org/10.1038/srep44679

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sakuma K, Kitamura A, Malins A, Kurikami H, Machida M, Mori K, Tada K, Kobayashi T, Tawara Y, Tosaka H (2017) Characteristics of radio-cesium transport and discharge between different basins near to the Fukushima Dai-ichi Nuclear Power Plant after heavy rainfall events. J Environ Radioact 169–170:137–150. https://doi.org/10.1016/j.jenvrad.2016.12.006

    Article  CAS  PubMed  Google Scholar 

  39. Suh KS, Kim S, Min BI (2017) Atmospheric Dispersion and sea surface deposition of radionuclides by the Fukushima nuclear accident. J Coast Res. https://doi.org/10.2112/SI79-018.1

    Article  Google Scholar 

  40. Gupta DK, Schulz W, Steinhauser G, Walther C (2018) Radiostrontium transport in plants and phytoremediation. Environ Sci Pollut Res 25:29996–30008. https://doi.org/10.1007/s11356-018-3088-6

    Article  CAS  Google Scholar 

  41. Karwan DL, Pizzuto JE, Aalto R, Marquard J, Harpold A, Skalak K, Benthem A, Levia DF, Siegert CM, Aufdenkampe AK (2018) direct channel precipitation and storm characteristics influence short-term fallout radionuclide assessment of sediment source. Water Resour Res 54:4579–4594. https://doi.org/10.1029/2017WR021684

    Article  Google Scholar 

  42. Yoshikane T, Yoshimura K (2018) Dispersion characteristics of radioactive materials estimated by wind patterns. Sci Rep. https://doi.org/10.1038/s41598-018-27955-4

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kaya A, Koc M (2018) Over-agglomeration and its effects on sustainable development: a case study on Istanbul. Sustainability 11(1):1–23

    Article  CAS  Google Scholar 

  44. Doğan E, Burak S (2007) Ship-originated pollution in the Istanbul strait (Bosphorus) and Marmara Sea. J Coast Res 23(2(232)):388–394

    Article  Google Scholar 

  45. TUIK, Address based population registration system. Turkish Statistical Institute. https://www.tuik.gov.tr/

  46. Toros H, Erdun H, Çapraz Ö, Özer B, Daylan EB, Öztürk Aİ (2013) Air pollution and quality levels in metropolitans of Turkiye for sustainable life, Avrupa Bilim ve Teknoloji Dergisi. Eur J Sci Tech 1:12–18

    Google Scholar 

  47. Guney M, Onay TT, Copty NK (2010) Impact of overland traffic on heavy metal levels in highway dust and soils of Istanbul. Turkiye Environ Monitor Assess 164(1–4):101–110

    Article  CAS  Google Scholar 

  48. Korkulu Z, Özkan N (2013) Determination of natural radioactivity levels of beach sand samples in the black sea coast of Kocaeli (Turkiye). Radiat Phys Chem 88:27–31. https://doi.org/10.1016/j.radphyschem.2013.03.022

    Article  CAS  Google Scholar 

  49. Al-Sulaiti H, Al Mugren K, Bradley D, Regan P, Santawamaitre T, Malain D, Habib A, Nasir T, Alkhomashi N, Al-Dahan N (2017) An assessment of the natural radioactivity distribution and radiation hazard in soil samples from Qatar using high-resolution gamma-ray spectrometry. Radiat Phys Chem 140:132–136. https://doi.org/10.1016/j.radphyschem.2017.05.001

    Article  CAS  Google Scholar 

  50. Beretka J, Matthew P (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48:87–95. https://doi.org/10.1097/00004032-198501000-00007

    Article  CAS  PubMed  Google Scholar 

  51. Santawamaitre T, Malain D, Al-Sulaiti H, Bradley D, Matthews M, Regan P (2014) Determination of 238U, 232Th and 40K activity concentrations in riverbank soil along the Chao Phraya river basin in Thailand. J Environ Radioact 138:80–86. https://doi.org/10.1016/j.jenvrad.2014.07.017

    Article  CAS  PubMed  Google Scholar 

  52. Uyanık NA, Uyanık O, Akkurt İ (2013) Micro-zoning of the natural radioactivity levels and seismic velocities of potential residential areas in volcanic fields: the case of Isparta (Turkiye). JAG 98:191–204. https://doi.org/10.1016/j.jappgeo.2013.08.020

    Article  Google Scholar 

  53. Protection R (2007) ICRP publication 103. Ann ICRP 37(2.4):2

    Google Scholar 

  54. Najam LA, Younis SA, Kithah FH (2015) Natural radioactivity in soil samples in Nineveh Province and the associated radiation hazards. Int J Phys 3:126–132. https://doi.org/10.12691/ijp-3-3-6

    Article  CAS  Google Scholar 

  55. Kayakökü H, Doğru M (2017) Radioactivity analysis of soil samples taken from the western and northern shores of Lake Van, Turkiye. Appl Radiat Isot 128:231–236

    Article  Google Scholar 

  56. Thu HNP, Van Thang N, Loan TTH, Van Dong N (2019) Natural radioactivity and radon emanation coefficient in the soil of Ninh Son region, Vietnam. Appl Geochem 104:176–183

    Article  CAS  Google Scholar 

  57. Alajeeli A, Elmahroug Y, Mohammed S, Trabelsi A (2019) Determination of natural radioactivity and radiological hazards in soil samples: Alhadba and Abuscabh agriculture projects in Libya. Environ Earth Sci 78(6):194

    Article  Google Scholar 

  58. da Conceição FT, Bonotto DM, Jiménez-Rueda JR, Roveda JAF (2009) Distribution of 226Ra, 232Th and 40K in soils and sugar cane crops at Corumbataí river basin, São Paulo State, Brazil. Appl Radiat Isotopes 67(6):1114–1120

    Article  Google Scholar 

  59. Sharma N, Singh J, Esakki SC, Tripathi R (2016) A study of the natural radioactivity and radon exhalation rate in some cements used in India and its radiological significance. J Radiat Res Appl Sci 9:47–56. https://doi.org/10.1016/j.jrras.2015.09.001

    Article  CAS  Google Scholar 

  60. Kapdan E, Varinlioglu A, Karahan G (2011) Radioactivity levels and health risks due to radionuclides in the soil of Yalova, northwestern Turkiye. Int J Env Res 5:837–846. https://doi.org/10.22059/IJER.2011.441

    Article  CAS  Google Scholar 

  61. Aközcan S, Yılmaz M, Külahcı F (2014) Dose rates and seasonal variations of 238U, 232Th, 226Ra 40K and 137Cs radionuclides in soils along Thrace, Turkiye. J Radioanal Nucl Chem 299:95–101. https://doi.org/10.1007/s10967-013-2730-5

    Article  CAS  Google Scholar 

  62. Durusoy A, Yildirim M (2017) Determination of radioactivity concentrations in soil samples and dose assessment for Rize Province, Turkiye. J Radiat Res Appl Sci 10:348–352. https://doi.org/10.1016/j.jrras.2017.09.005

    Article  CAS  Google Scholar 

  63. Karataşlı M, Turhan Ş, Varinlioğlu A, Yeğingil Z (2016) Natural and fallout radioactivity levels and radiation hazard evaluation in soil samples. Environ Earth Sci 75:424. https://doi.org/10.1007/s12665-016-5414-y

    Article  CAS  Google Scholar 

  64. Wang Q, Song J, Li X, Yuan H, Li N, Cao L (2015) Environmental radionuclides in a coastal wetland of the Southern Laizhou Bay, China. Mar Pollut Bull 97:506–511. https://doi.org/10.1016/j.marpolbul.2015.05.035

    Article  CAS  PubMed  Google Scholar 

  65. Singh S, Rani A, Mahajan RK (2005) 226Ra, 232Th and 40K analysis in soil samples from some areas of Punjab and Himachal Pradesh, India using gamma ray spectrometry. Radiat Meas 39:431–439. https://doi.org/10.1016/j.radmeas.2004.09.003

    Article  CAS  Google Scholar 

  66. Oyeyemi KD, Usikalu M, Aizebeokhai A, Achuka J, Jonathan O (2017) Measurements of radioactivity levels in part of Ota Southwestern Nigeria: Implications for radiological hazards indices and excess lifetime cancer-risks. J Phys: Confe Ser. 1:2. https://doi.org/10.1088/1742-6596/852/1/012042

    Article  CAS  Google Scholar 

  67. Ahmed NK, El-Arabi AGM (2005) Natural radioactivity in farm soil and phosphate fertilizer and its environmental implications in Qena governorate, Upper Egypt. J Environ Radioact 84:51–64. https://doi.org/10.1016/j.jenvrad.2005.04.007

    Article  CAS  PubMed  Google Scholar 

  68. TAEK (2010) Environmental radioactivity monitoring in Turkiye. Technique Report, Ankara

    Google Scholar 

  69. Külahcı F, Şen Z (2009b) Risk assessment of distribution coefficient from 137 Cs measurements. Environ Monit Assess 149(1–4):363–370

    Article  Google Scholar 

  70. Külahcı F (2016) Proposals for risk assessment of major cations in surface water and deep sediment: iso-cation curves, probabilities of occurrence and non-occurrence of cations. Environ Earth Sci 75(11):980

    Article  Google Scholar 

  71. Evans M, Hastings N, Peacock B (2001) Statistical distributions. IOP Publishing, Bristol

    Google Scholar 

  72. Weisstein EW (2000) Hazard Function. From MathWorld—a Wolfram Web Resource. https://mathworld.wolfram.com/HazardFunction.html.

Download references

Acknowledgements

The authors are thankful to the rector of Kirklareli University and staff the Gamma Spectrometer Laboratory at Advanced Technologies Application and Research Center, Turkey for helping with gamma spectrometric analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serpil Aközcan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aközcan, S., Külahcı, F., Günay, O. et al. Radiological risk from activity concentrations of natural radionuclides: Cumulative Hazard Index. J Radioanal Nucl Chem 327, 105–122 (2021). https://doi.org/10.1007/s10967-020-07474-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07474-1

Keywords

Navigation